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Section A (36 marks)

1 (i) State the exact value of [1]

(ii) Express 300° in radians, giving your answer in the form where k is a fraction in its lowest
terms. [2]

2 Given that find and 

Show, without using a calculator, that when the value of is [5]

3

Fig. 3

Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is .

State the equation of

(i) graph B, [2]

(ii) graph C. [2]
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4 (i) Find the second and third terms of the sequence defined by the following.

[2]

(ii) Find . [2]

5 A sector of a circle of radius 5 cm has area 9 cm2.

Find, in radians, the angle of the sector.

Find also the perimeter of the sector. [5]

6 (i) Write down the values of and where [2]

(ii) Show that . [3]

7 (i) Sketch the graph of [2]

(ii) Use logarithms to solve the equation Give your answer correct to 2 decimal places.
[3]

8 (i) Show that the equation may be written in the form

[1]

(ii) By factorising this quadratic equation, solve the equation for values of q between 0° and 180°. 
[4]

Section B (36 marks)

9 The equation of a cubic curve is 

(i) Find and show that the tangent to the curve when passes through the point

[5]

(ii) Use calculus to find the coordinates of the turning points of the curve. You need not
distinguish between the maximum and minimum. [4]

(iii) Sketch the curve, given that the only real root of is correct
to 1 decimal place. [3]

x � 0.22x3 � 9x2 � 12x � 2 � 0

(�1, �41).

x � 3
dy

dx

y � 2x3 � 9x2 � 12x � 2.

2 sin2q � 7 sin q � 3 � 0.

2 cos2q �  7 sin q � 5

3x � 20.

y � 3x.
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10 Fig. 10 shows the speed of a car, in metres per second, during one minute, measured at 10-second
intervals.

Fig. 10

The measured speeds are shown below.

(i) Use the trapezium rule with 6 strips to find an estimate of the area of the region bounded by
the curve, the line and the axes. [This area represents the distance travelled by the car.]

[4]

(ii) Explain why your calculation in part (i) gives an overestimate for this area. Use appropriate
rectangles to calculate an underestimate for this area. [3]

The speed of the car may be modelled by 

(iii) Show that the difference between the value given by the model when and the measured
value is less than 3% of the measured value. [2] 

(iv) According to this model, the distance travelled by the car is

Find this distance. [3]
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11 (a) André is playing a game where he makes piles of counters. He puts 3 counters in the first pile.
Each successive pile he makes has 2 more counters in it than the previous one.

(i) How many counters are there in his sixth pile? [1]

(ii) André makes ten piles of counters. How many counters has he used altogether? [2]

(b) In another game, played with an ordinary fair die and counters, Betty needs to throw a six to
start.

The probability of Betty starting on her nth throw is given by

(i) Calculate Give your answer as a fraction. [2]

(ii) The values form an infinite geometric progression. State the first term and
the common ratio of this progression.     

Hence show that [3]

(iii) Given that show that n satisfies the inequality

Hence find the least value of n for which [4]Pn � 0.001.
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